
Clerk: Moldable Live Programming for Clojure
Martin Kavalar

martin@nextjournal.com
nextjournal

Berlin, Germany

Philippa Markovics
philippa@nextjournal.com

nextjournal
Berlin, Germany

Jack Rusher
jack@nextjournal.com

nextjournal
Berlin, Germany

ABSTRACT
Clerk is an open source Clojure programmer’s assistant that builds
upon the traditions of interactive and literate programming to pro-
vide a holistic moldable development environment. Clerk layers
static analysis, incremental computation, and rich browser-based
graphical presentations on top of a Clojure programmer's familiar
toolkit to enhance their workflow.

CCS CONCEPTS
• Human-centered computing → Visualization systems and
tools; Interactive systems and tools; • Software and its engi-
neering→ Integrated and visual development environments.

KEYWORDS
literate programming, moldable development, live programming,
clojure, lisp, notebooks
ACM Reference Format:
Martin Kavalar, Philippa Markovics, and Jack Rusher . 2023. Clerk: Mold-
able Live Programming for Clojure. In Proceedings of <Programming> 2023
(PX 23). ACM, New York, NY, USA, 10 pages. https://doi.org/XXXXXXX.
XXXXXXX

1 INTRODUCTION: LITERATE
PROGRAMMING, NOTEBOOKS AND
INTERACTIVE DEVELOPMENT

Knuth's Literate Programming1 [7] emphasized the importance of
focusing on human beings as consumers of computer programs.
His original implementation involved authoring files that combine
source code and documentation, which were then divided into two
derived artifacts: source code for the computer and a typeset doc-
ument in natural language to explain the program.

At the same time, other software was developed to target scien-
tific use cases rather than program documentation. These systems,
which prefigured modern computational notebooks, ranged from
REPL-driven approaches like Macsyma and Mathematica to inte-
grated WYSIWYG editors like Ron Avitzur's Milo, PARC's Tioga
and Camino Real, and commercial software like MathCAD. [6]
1An extensive archive of related material is maintained here
(http://www.literateprogramming.com).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PX 23, March 13–17, 2023, Tokyo, Japan
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM…$15.00
https://doi.org/XXXXXXX.XXXXXXX

In contemporary data science and software engineering prac-
tice, we often see interfaces that combine these two approaches,
like Jupyter2, Observable3, Pluto4, and Livebook5. In these note-
books, a user can mix prose, code, and visualizations in a single
document that provides the advantages of Knuth's Literate Pro-
gramming with those of a scientific computing environment. Un-
fortunately, most such systems require the programmer to use a
browser-based editing environment (which alienates programmers
with a strong investment in their own tooling) and custom file for-
mats (which cause problems for integration with broader software
engineering practices). [2]

Although notebooks of this kind present an improvement on the
programming experience of many languages, they often feel like a
step backward to experienced Lisp programmers. In Lisp environ-
ments, it is common to be able to place the cursor after a single Lisp
form and evaluate it in the context of a running program, provid-
ing finer granularity of control compared to the per-cell model of
most notebooks. This workflow leads to a development style that
these programmers are in no hurry to lose.

That LISP users tend to prefer structured growth rather
than stepwise refinement is not an effect of the pro-
gramming system, since both methods are supported.
I believe, however, that it is a natural consequence of
the interactive development method, since programs
in early stages of growth can be executed and pro-
grams in early stages of refinement cannot. [10]
– Erik Sandewall

At the same time, though a number of Lisp environments have
included graphical presentations of program objects6, most mod-
ern tooling relies on text-based representations of evaluation out-
put and doesn't include the ability to embed widgets for direct
manipulation of program state. Additionally, problems often arise
when printing structurally large results, which can cause editor
performance to degrade or lead to the truncation of output, and
there's limited room for customization or support for requesting
more data.

In comparison, interactive programming in Smalltalk-based sys-
tems has included GUI elements since the beginning, and work
to further improve programmer experience along these lines has

2https://jupyter.org
3https://observablehq.com
4https://plutojl.org
5https://livebook.dev
6See, for example, the Common Lisp Interface Manager
(https://en.wikipedia.org/w/index.php?title=Common_Lisp_Interface_Manager&oldid=1121151005).

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
http://www.literateprogramming.com
https://doi.org/XXXXXXX.XXXXXXX
https://jupyter.org
https://observablehq.com
https://plutojl.org
https://livebook.dev
https://en.wikipedia.org/w/index.php?title=Common_Lisp_Interface_Manager&oldid=1121151005

PX 23, March 13–17, 2023, Tokyo, Japan Kavalar, Markovics, Rusher

continued in Smalltalk-based systems like Self7 [11], Pharo8, Glam-
orous Toolkit9 [3] and Newspeak10 or Ampleforth11, which offer
completely open and customizable integrated programming envi-
ronments. Glamorous Toolkit, in particular, champions the idea of
using easily constructed custom tools to improve productivity and
reduce time spent on code archeology, which is also a big inspira-
tion for what we'll present here.

This paper contributes a description of the Clerk system, along
with its background and the motivation for its construction. We
include a number of examples of things built by users of the tool,
and some discussion of the feedback that it has thus far received.

2 PROGRAMMINGWITH CLERK
In such a future working relationship between hu-
man problem-solver and computer ‘clerk’, the capa-
bility of the computer for executingmathematical pro-
cesses would be used whenever it was needed. [4]
– Douglas Engelbart

We have built Clerk on top of Clojure [5], a functional-by-default
Lisp dialect primarily hosted on the Java Virtual Machine12. Sev-
eral aspects of the language make it an appealing target for this
project:

• being a Lisp, there is limited syntax with which to contend,
and the language comeswith good libraries formeta-linguistic
programming

• an emphasis on pure functions and immutable data struc-
tures makes static analysis easier

• when mutable state is needed, there are idiomatic thread-
safe boxes that are read and updated in a functional style

While there are some rough edges around a few particularly
tricky language features, these aspects have mostly worked out in
our favor.

2.1 Basic Interaction: Bring-Your-Own-Editor
Clerk combines Lisp-style interactive programming with the bene-
fits of computational notebooks, literate programming, and mold-
able development, all without asking programmers to abandon their
favorite tools or give up their existing software engineering prac-
tices. Its design stems partially from the difficult lessonswe learned
after years of unsuccessfully trying to get our own team to use an
online browser-based notebook platform13 that we also developed.

When working with Clerk, a split-view is typically used with
a code editor next to a browser showing Clerk’s representation of
the same notebook, as seen in Figure 1.

7https://selflanguage.org
8https://pharo.org
9https://gtoolkit.com
10https://newspeaklanguage.org
11Ampleforth: A Live Literate Editor (https://blog.bracha.org/Ampleforth-
Live22/out/primordialsoup.html?snapshot=Live22Submission.vfuel) by Gilad
Bracha
12https://en.wikipedia.org/w/index.php?title=Java_virtual_machine&oldid=1144897244
13https://nextjournal.com

Figure 1: Clerk side-by-side with Emacs

As shown here, our notebooks are just source files containing
regular Clojure code. Block comments are treated as markdown
text with added support for LaTeX, data visualization, and so on,
while top-level forms are treated as code cells that show the result
of their evaluation.14 This format allows us to use Clerk in the con-
text of production code that resides in revision control. Because
files decorated with these comment blocks are legal code without
Clerk loaded, they can be used in many contexts where traditional
notebook-specific code cannot. This has led, among other things,
to Clerk being used extensively to publish documentation for li-
braries that are then able to ship artifacts that have no dependency
on Clerk itself.

Clerk’s audience is experienced Clojure developers who are fa-
miliar with interactive development.They are able to continue pro-
gramming in their accustomed style, evaluating individual forms
and inspecting intermediate results, but with the added ability to
show! a namespace/file in Clerk. A visual representation of the file
is then re-computed either:

• every time the file is saved, using an an optional filewatcher;
or alternatively,

• via an editor hot-key that can be bound to show the current
document. (The authors generally prefer the hot-key over
the file watcher, as it feels more direct and gives more con-
trol over when to show something in Clerk.)

Control and configuration of Clerk primarily occurs through
evaluation of Clojure forms from within the programmer's envi-
ronment, rather than using outside control panels and settings.
This integrationwith the programmer's existing tooling eases adop-
tion and allows advanced customization of the system through
code.

2.2 Fast Feedback: Caching & Incremental
Computation

To keep feedback loops short, Clerk uses dependency analysis to
limit recomputation to forms that haven't previously been evalu-
ated in Clerk.

In practice this means most changes to a Clerk document are
reflected instantly (within 100ms) after saving a file or hitting the
keybinding to update the open document.

14We have borrowed this approach from maria.cloud (https://maria.cloud),
a web-hosted interactive Clojure learning tool created by Matt Huebert
(https://matt.is), Dave Liepmann (https://www.daveliepmann.com/), and Jack
Rusher (https://jackrusher.com/). Maria grew out of work presented at PX16
(https://px16.matt.is) by Matt Huebert.

2

https://selflanguage.org
https://pharo.org
https://gtoolkit.com
https://gtoolkit.com
https://newspeaklanguage.org
https://en.wikipedia.org/w/index.php?title=Java_virtual_machine&oldid=1144897244
https://nextjournal.com
https://blog.bracha.org/Ampleforth-Live22/out/primordialsoup.html?snapshot=Live22Submission.vfuel
https://maria.cloud
https://matt.is
https://www.daveliepmann.com/
https://jackrusher.com/
https://jackrusher.com/
https://px16.matt.is

Clerk: Moldable Live Programming for Clojure PX 23, March 13–17, 2023, Tokyo, Japan

The caching works on the level of top-level forms. A hash is
computed for each top-level form. A change to the form or one of
its transitive dependencies will lead to a new hash value.

When Clerk is asked to show a notebook, it will only evaluate
forms that aren't cached in one of Clerk's two caches:

• an in-memory cache stores a map of the hash of a given
form to its current result.This cache is limited to the current
forms of the active document.

• An on-disk-cache stores the same information but to allow
the user to continue work after a restart without recomput-
ing potentially expensive operations.15 Because Clojure sup-
ports lazy evaluation of potentially infinite sequences, safe-
guards are in place to skip caching unreasonable values.

This caching behavior can be fine-tuned (or disabled) down to
the level of individual forms.

The on-disk caches use a content-addressed store where each
result is stored using a filename derived from the SHA-2 hash of
its contents. We use the self-describing multihash format16 which
combines an identifier of the hash function with its digest length
and value to support future changes of the hash algorithm. Addi-
tionally, a file named after the hash of a form contains a pointer to
its results filename.

This combination of immutability and indirection makes dis-
tributing the cache trivial using last-write wins for the tiny (90
bytes) pointer files. The content-addressed result cache files are
never changed and can thus be synchronized without conflict.

While I did believe, and it has been true in practice,
that the vast majority of an application could be func-
tional, I also recognized that almost all programswould
need some state. Even though the host interop would
provide access to (plenty of) mutable state constructs,
I didn’t want state management to be the province of
interop; after all, a point of Clojure was to encourage
people to stop doing mutable, stateful OO. In partic-
ular I wanted a state solution that was much simpler
than the inherently complex locks and mutexes ap-
proaches of the hosts for concurrency-safe state. And
I wanted something that took advantage of the fact
that Clojure programmerswould be programming pri-
marily with efficiently persistent immutable data. [5]
– Rich Hickey

It is idiomatic in Clojure to use boxed containers to manage mu-
table state.17 While there are several of these constructs in the lan-
guage, in practice atoms18 are the most popular by far. An atom
allows reading the current value inside it with deref/@ and updating
it's value with swap!.

When Clerk encounters an expression in which an atom's mu-
table value is being read using deref, it will try to compute a hash
based on the value inside the atom at runtime, and extend the ex-
pression's static hash with it.

15In tasks with intensive data preparation steps, this savings can be considerable.
16https://multiformats.io/multihash/
17Values and Change: Clojure’s approach to Identity and State
(https://clojure.org/about/state)
18https://clojure.org/reference/atoms

This extension makes Clerk's caching work naturally with id-
iomatic use of mutable state, and frees programmers from the need
to manually opt out of caching for those expressions.

2.3 Semantic differences from regular Clojure
Clojure uses a single-pass, whole-file compilation strategy inwhich
each evaluated form is added to the state of the running system.
One positive aspect of this approach is that manually evaluating a
series of forms produces the same result as loading a file contain-
ing the same forms in the same order, which is a useful property
when interactively building up a program.

A practical concern with this sort of “bottom-up” programming
is that the state of the system can diverge from the state of the
source file, as forms that have been deleted from the source filemay
still be present in the running system. This can lead to a situation
where newly written code depends on values that will not exist
the next time the program runs, causing surprising errors. To help
avoid this, Clerk defaults to signaling an error unless it can resolve
all referenced definitions in the runtime to the source code.

It is our goal to match the semantics of Clojure as closely as
possible but as a very dynamic language, there are limits to what
Clerk's analysis can handle. Here are some of the things we cur-
rently do not support:

• Multiple definitions of the same var in a file
• Setting dynamic variables using set!

• Dynamically altering vars using alter-var-root

• Temporarily redefining vars using with-redefs

We have included a mechanism to override Clerk's error check-
ing in cases where the user knows that one or more of these tech-
niques are in use.

2.4 Presentation
Clerk uses a client/server architecture. The server runs in the JVM
process that hosts the user's development environment. The client
executes in a web browser running an embedded Clojure inter-
preter.19

The process of conveying a value to the client is a presentation,
a term taken from Common Lisp systems that support similar fea-
tures.20 The process of presentation makes use of viewers, each
of which is a hash map from well-known keys to quoted forms
containing source code for Clojure functions that specify how the
client should render data structures of a given type.When a viewer
form is received on the client side, it is compiled into a function
that will be then called on data later sent by the server.

When the present function is called on the server side, it de-
faults to performing a depth-first traversal of the data structure
it receives, attaching appropriate viewers at each node of the tree.
The resulting structure containing both data and viewers is then
sent to the client.

To avoid overloading the browser or producing uselessly large
output, Clerk’s built-in collection viewer carries an attribute to
control the number of items initially displayed, allowingmore data

19Small Clojure Interpreter (https://github.com/babashka/sci) by Michiel Borkent
20This feature originated on the Lisp Machine, and lives on in a reduced
form as a feature of the emacs package Slime (https://slime.common-
lisp.dev/doc/html/Presentations.html).

3

https://multiformats.io/multihash/
https://clojure.org/reference/atoms
https://clojuredocs.org/clojure.core/deref
https://clojuredocs.org/clojure.core/swap!
https://clojure.org/about/state
https://clojuredocs.org/clojure.core/set!
https://clojuredocs.org/clojure.core/alter-var-root
https://clojuredocs.org/clojure.core/with-redefs
https://github.com/babashka/sci
https://slime.common-lisp.dev/doc/html/Presentations.html

PX 23, March 13–17, 2023, Tokyo, Japan Kavalar, Markovics, Rusher

to be requested by the user on demand. Besides this simple limit,
there’s a second global budget per result to limit the total number
of items shown in deeply nested data structures. We’ve found this
simple system to work fairly well in practice.

One benefit of using the browser for Clerk's rendering layer is
that it can produce static HTML pages for publication to the web.
We could not resist the temptation to produce this document with
Clerk.

It's also possible to use Clerk's presentation system in other con-
texts. We know of at least one case of a user leveraging Clerk's pre-
sentation system to do in-process rendering without a browser.21

2.5 Built-in Viewers
Clerk comes with a set of built-in viewers for common situations.
These include support for Clojure’s immutable data structures, HTML
(including the hiccup variant22 that is often used in Clojure to rep-
resent HTML and SVG), data visualization, tables, LaTeX, source
code, images, and grids, as well as a fallback viewer based on Clo-
jure’s printer. The Book of Clerk23 gives a good overview of the
available built-ins. Because Clerk’s client is running in the browser,
we are able to benefit from the vast JS library ecosystem. For exam-
ple we're using Plotly24 and vega25 for graphing, CodeMirror26 for
rendering code cells, and KaTeX27 for typesetting mathematics.

Clerk’s built-in viewers try to suit themselves to typical Data
Science use cases. By default, Clerk shows a code block’s result as-
is with some added affordances like syntax coloring and expand-
ability of large sub-structures that are collapsed by default.

Here is an interactive example of the well-known iris data set,
which we've added as a dependency to this notebook. Clicking the
disclosure triangles will expand the data structure:

datasets/iris

Additional affordances are automatic expansion of a nested data
structure based on its shape and expandingmultiple sub-structures
on the same level, as demonstrated in this video:

Figure 2: Expanding multiple sub-structures at once

21See Desk (https://github.com/phronmophobic/desk), by Adrian Smith.
22https://github.com/weavejester/hiccup
23https://book.clerk.vision
24https://plotly.com/javascript/
25https://github.com/vega/vega-embed
26https://codemirror.net
27https://katex.org

Using the built-in clerk/table viewer, the same data structure
can also be rendered as a table. The table viewer uses heuristics to
infer the makeup of the table, such as column headers, from the
structure of the data:

(clerk/table datasets/iris)

Together with tables, plots are the most commonly used viewer
for Data Science use cases. In the following figure, the same iris

dataset, as shown in the above table example, is used to render an
interactive Vega-Lite28 plot using the clerk/vl viewer:

(clerk/vl {:data {: values datasets/iris}

:width 500

:height 500

:title "sepal-length vs. sepal-width"

:mark {:type "point"

:tooltip {:field :species }}

:encoding {:color {:field :species}

:x {:field :sepal-length

:type :quantitative

:scale {:zero false }}
:y {:field :sepal-width

:type :quantitative

:scale {:zero false }}}
:embed/opts {: actions false }})

28https://vega.github.io/vega-lite/
4

https://github.com/weavejester/hiccup
https://book.clerk.vision
https://plotly.com/javascript/
https://github.com/vega/vega-embed
https://codemirror.net
https://katex.org
https://github.com/phronmophobic/desk
https://vega.github.io/vega-lite/

Clerk: Moldable Live Programming for Clojure PX 23, March 13–17, 2023, Tokyo, Japan

It is important to note that Clerk’s viewers work in a way that
encourages composition. Multiple viewers can be combined to suit
a specific use case such as the following example showing a table
of airline passenger numbers29 by year and quarter and embedding
a sparkline graph into the table row for each year.

A typical Clerk workflow for this would be to first take a look
at the shape of the data:

datasets/air-passengers

Then, a sparkline function is defined and tested to generate graphs
(using clerk/vl) that will be embedded into each table row later:

(defn sparkline [values]

(clerk/vl {:data {: values (map-indexed (fn [i n] {:x i

:y n}) values)}

:mark {:type :line :strokeWidth 1.2}

:width 140

:height 20

:config {: background nil :border nil :view

{: stroke "transparent"}}

:encoding {:x {:field :x :type :ordinal :

axis nil :background nil}

:y {:field :y :type :quantitative

:axis nil :background nil}}

:embed/opts {: actions false }}))

(sparkline (shuffle (range 30)))

Finally, the data is reduced to quarters and years, adding the
sparkline graphs in a final step:

29using a Clojure port (https://github.com/applied-science/edn-datasets) of
R’s built-in dataset of Box & Jenkins classic airline data (https://search.r-
project.org/R/refmans/datasets/html/AirPassengers.html).

(clerk/table

{:head ["Year" "Q1" "Q2" "Q3" "Q4" "Trend"]

:rows (->> datasets/air-passengers

(group-by :year)

(map (fn [[year months]]

(let [qs (->> months (map :n) (

partition 3) (map #(reduce + %))

)]

(concat [year]

qs

[(sparkline (map :n months)

)]))))

(sort-by first))})

This sort of gradual refinement is a hallmark of exploratory pro-
gramming, and is especially enjoyable with access to the full power
of a general purpose programming language.

2.6 Moldable Viewer API
Clerk’s viewers are an ordered (and thus prioritized) collection of
plain Clojure hash maps. Clerk interprets the following optional
keys in each viewer map:

• :pred is a predicate function that tests whether this viewer
should be used for a given data structure

• :transform-fn is an optional function run on the server side
to transform data before sending it to the client. It receives
a map argument with the original value under a key. Addi-
tional keys carry the path, the viewer stack, and the budget
(for elision)

• :render-fn is a quoted form that will be sent to the browser,
where it will be turned into a function that will be called to
display the data

• :page-size is a number that indicates how many items to
send in each chunk during elision/pagination

Here, for example, is the code viewer, which shows a piece of
Clojure code with idiomatic syntax highlighting:30

30The source code here is rendered by the viewer that it describes.
5

https://github.com/applied-science/edn-datasets
https://search.r-project.org/R/refmans/datasets/html/AirPassengers.html

PX 23, March 13–17, 2023, Tokyo, Japan Kavalar, Markovics, Rusher

Viewers can also be explicitly selected by wrapping a value in
the clerk/with-viewer function, which produces a presentation for
that value using that viewer. Alternatively, viewers can be selected
by placing a Clojure metadata declaration before a form. Because
of the way Clojure handles compilation, metadata in this position
is ultimately ignored in the generated code. So far as we know, this
is a novel mechanism for out-of-band signaling to a specialized
Clojure parser.

The process of selecting viewers happens programmatically on
the server side, thus using the programmer's already existing in-
teractive programming environment as a user interface.

2.7 Sync
To help with creating interactive tools using Clerk, it also supports
bidirectional sync of state between the client and server Clojure en-
vironments. If a Clojure atom on the server is annotated with meta-
data indicating it is sync, Clerk will create a corresponding var in
the client environment. Both of these atoms will be automatically
instrumented with an update watcher that broadcasts a diff to the
other side.

In addition, a server-side change will trigger a refresh of the cur-
rently active document, which will then re-calculate the minimum
subset of the document that is dependent on that atom's value.This
allows us to use Clerk for small local-first apps, as shown in Fig-
ure 7.

2.8 Tap Stream Inspector
Clerk also comes with an inspector for Clojure's tap system.

tap is a shared, globally accessible system for dis-
tributing a series of informational or diagnostic val-
ues to a set of (presumably effectful) handler func-
tions. It can be used as a better debug prn, or for fa-
cilities like logging etc.
– Clojure 1.10 Changelog

When enabled, Clerkwill attach a tap listener function and record
and show the tap stream. This makes Clerk's viewer system acces-
sible across file and namespace boundaries and independently of
the caching mechanisms.

2.9 Embedding Examples
The comment macro in Clojure is typically used to annotate source
code with rich examples that exercise the program during develop-
ment and aid comprehension.

Clerk's example macro expands on that by showing the source
code next to the evaluation result.

(clerk/example

(+ 40 2)

(-> 42 range shuffle)
(clerk/code (macroexpand '(clerk/example (inc 41))))

(clerk/html [:h1 "�"]))

2.10 Prose-oriented Documents
The first and primary use case for Clerk was adding prose, visual-
izations, and interactivity to Clojure namespaces. However, when
writing documents that are mainly prose, but would benefit from
some computational elements, it is rather tedious to write every-
thing in comment blocks. To make this easier, Clerk can also oper-
ate on markdown files with “code-fenced” source code blocks. All
Clojure source blocks in such a file are evaluated and replaced in
the generated document with their result.

This format is very similar to other markdown-based notebooks,
like R Markdown31, but specifically tailored to Clojure. We used
this approach to write this paper, the source for which is located
on Github32.33

During the review process for this paper, one of the reviewers
mentioned that they would have preferred a PDF document to a
website. We took this is an opportunity to test the flexibility of
our system, adding a LaTeX translation layer to produce a sepa-
rate printable version. It sadly lacks the interactive features of the
web presentation, but we are quite pleased with the quality of the
document we were able to send to press with relatively little addi-
tional work.

3 EXAMPLES OF MOLDABLE DEVELOPMENT
WITH CLERK

In addition to the sorts of traditional data science use cases that
one might expect from something that has “notebook” features,
we intend Clerk to be a general purpose programmer's assistant34
that allows the rapid construction of tiny interfaces during daily
31https://rmarkdown.rstudio.com
32https://github.com/mk/clerk-px23
33One nice thing about this approach is that other systems, like Github, are able to
render a reasonable version of the document, though without evaluation.
34Weuse this term in appreciation of pioneering historical work byWarren Teitelman.

6

https://github.com/clojure/clojure/blob/0b42eab4bfca5270e0d2b2e58d83b1e2c8a85473/changes.md#23-tap
https://clojuredocs.org/clojure.core/comment
https://rmarkdown.rstudio.com
https://github.com/mk/clerk-px23

Clerk: Moldable Live Programming for Clojure PX 23, March 13–17, 2023, Tokyo, Japan

work. Here are a few samples of tools and documentation created
in this manner.

3.1 Augmenting table names
This example illustrates an approach we used to make working
with a legacy DB2 database easier. The database’s column names
are made up of largely human-unreadable 8 character sequences:

Figure 3: AS/400 Column Names

We were able to automatically translate these names using a
metaschema extracted from the database. This allowed us to create
a viewer thatmaps those eight-character names to human-readable
(German-only) names (which we can then translate to English). In
typical Lisp fashion, we go on to inspect a query interactively. We
can use the translated names in the table, and even print them, but
one quickly sees the limit of plain-text printing:

Figure 4: Inspecting AQuery Using the REPL

With Clerk, were able to render the output as a graphical ta-
ble without the limitations of plain text. Further, we can use the
Viewer API to extend the table viewer’s headings to show the trans-
lated metaschema names (plus showing the original eight charac-
ter names in a de-emphasized way so that they aren’t lost). We can
go further still, showing the original German names when move
the mouse over the headings:

Figure 5: Augmented Table Headings

3.2 Rich documentation features
This example illustrates the use of Clerk to create rich documen-
tation for clojure2d’s colors package.35 They used Clerk’s Viewer
API to implement custom viewers to visualize colors, gradients and
color spaces, then publish that documentation on the web by gen-
erating a static website directly from the source code of the library.

Figure 6: Custom Viewers for Clojure2d’s Colors Library

35The full documentation is
here (https://clojure2d.github.io/clojure2d/docs/notebooks/notebooks/color.html).

7

https://clojure2d.github.io/clojure2d/docs/notebooks/notebooks/color.html

PX 23, March 13–17, 2023, Tokyo, Japan Kavalar, Markovics, Rusher

3.3 Regex Dictionary
Built as a showcase for Clerk’s sync feature, this example allows
entering a regex into a text input and get dictionary matches as
result while you type:

Figure 7: Interactive Regex Dictionary

It is built using a Clojure atom containing the text input’s cur-
rent value that is synced between the client and server. As you
type into the input, the atom’s content will be updated and synced.
Consequently, printing the atom’s content in your editor will show
the input’s current value:

Figure 8: Printing the value of a synced Clojure atom

3.4 Lurk36: Interactive Lucene-powered Log
Search

Also building on Clerk’s sync feature, this interactive log search
uses Lucene37 on the JVM side to index and search a large number
of log entries. In addition to using query input, logs can also be
filtered by timeframe via an interactive chart. It is worth noting
that this example uses a full-screen layout by opting out of Clerk's
default notebook styling via Clerk’s CSS customization options.

Figure 9: Interactive Log Search

3.5 Experience
Our experience as the developers and users of Clerk has been sur-
prisingly positive, and it has seen solid adoption within our orga-
nization, including many of us also using it for side-projects.

We believe this is in large part due to the purely additive design
of Clerk. When one chooses to view a namespace through Clerk,
it evokes feelings of added power, without the loss of control that
comes from leaving one's comforting and familiar editing environ-
ment (Emacs, Vim, VS Code). In hindsight, we now realize that we
underestimated what a big ask that is for potential users of these
sorts of systems.

We've chosen a few quotes fromClerk's user base to give a sense
of how the Clojure community has experienced Clerk. So far, even
with thousands of users, we've had mostly positive feedback, aside
from the usual bug reports every project receives.

[Clerk] is making the training of junior Clojure pro-
grammers a massive pleasure! […]
It helps us to bypass what would otherwise be a lot of
distracting UI programming. Set up your env, make
a namespace, hit a keybind, hey presto, your code is
running in a browser.
– Robert Stuttaford
I'm using Clerk to visualize statistics properties from
a simulation in a model checker […] it's basically a
wrapper over TLA+ […]

36https://github.com/nextjournal/lurk
37https://lucene.apache.org/

8

https://github.com/nextjournal/lurk
https://lucene.apache.org/

Clerk: Moldable Live Programming for Clojure PX 23, March 13–17, 2023, Tokyo, Japan

Amazing that Clerk just lets you focus on what really
matters and nothing else!
– Paulo Feodrippe
I just wanted to express some gratitude for Clerk. It’s
been a game changer for me in terms of understand-
ing problems and communicating that understanding
to other people.
– Jeffrey Simon

One often under-appreciated area in the academic discourse on
programming is aesthetics. We believe the baseline level of design
that is automatically inherited by any document produced with
Clerk has contributed to the positive experiences our users have
reported.

Attractive things dowork better—their attractiveness
produces positive emotions, causingmental processes
to be more creative, more tolerant of minor difficul-
ties.
– Don Norman, Emotional Design

4 RELATEDWORK
Besides the systems mentioned earlier in the paper, there are a
number of other contemporary related systems. Many of them in-
troduce the viewing layer to the editor itself, as seen in various
Smalltalk experiments (Moldable Development [3], Newspeak38,
Babylonian Programming [9], etc), and in recent work on LiveLits
[8] and visual syntactic extensions to the Racket programming lan-
guage. [1]

In contrast, because we have found it more persuasive to argue
for the use of such systems in the context of a user's existing tool-
ing, we've focused on an approach that supplements existing work-
flows with a sidecar previewer. Other systems that have taken a
similar approach include:

• Org mode39 is a major mode for Emacs40 supporting poly-
glot literate programming based on a plain text format. Org's
approach is in many ways similar to our Markdown mode,
where explicit code fences are used to introduce program-
matic constructs to a document, and a variety of previewers
are available for org files, though in a fragmented ecosys-
tem where each kind of application requires a different kind
of previewer. We were partially inspired by positive expe-
riences using org-mode in the design of Clerk, though we
focused more on our annotated source code format.

• Streamlit41 is a Python library that eshews a custom format
and enables building a web UI on regular python scripts. Its
caching system42 memoizes functions that are tagged using
Python's decorators. While there are several similarities be-
tween Clerk and Steamlits, the two systems have a very dif-
ferent focus. Streamlit is primarily a rapid application devel-
opment environment, without Clerk's focus is on combining
Literate Programming and Moldable Development.

38Enhancing Liveness with Exemplars in the Newspeak IDE
(https://newspeaklanguage.org/pubs/newspeak-exemplars.pdf) by Gilad Bracha.
39https://orgmode.org
40https://www.gnu.org/software/emacs/
41https://streamlit.io
42https://docs.streamlit.io/library/get-started/main-concepts#caching

We are pleased to see a number of other systems working with
annotated source code, including Pluto43 and Livebook44, and con-
sider this convergent evolution toward tools that developers are
more likely to actually use as a positive trend.

5 FUTUREWORK
Our goal with the development of Clerk is to leave the toolbox open:
we want Clerk's users to be able to customize the behavior of the
running system in a predictable way, often by providing functions
to the system at runtime.

Clerk's viewer API is a first example of this approach, but we
want to take it further by letting users:

• provide functions to control the caching e.g. to supportmore
efficient caching of data frames

• letting the viewer API's :pred function opt into receiving
more context like the path in the tree

• make caching more granular and support caching function
invocations

• override parse and eval to support additional syntaxes with
different semantics

So far we've mainly used Clerk's caching on local machines in
isolation. We plan to share a distributed cache within our dev team
in order to learn about the benefits and challenges this can bring.
We also want to extend Clerk to better communicate caching be-
havior to its users (why a value could or could not be cached, if it
was cached in-memory or on-disk).

We're also actively exploring different ways of bringing an ex-
ploratory Clerk notebook to production. In exploratory work one
often uses global state in Clojure atoms and vars which makes a
computation tangible. When serving concurrent requests in a pro-
duction setting that global state can be a source of inconsistencies.

We've been discussing ways to write changes originating from
controls in Clerk's view back to source files. We also believe that
for this to be a good developer experience, concurrent modifica-
tions without intermediate saving should be supported, making a
simple integration that works by overwriting source files insuffi-
cient. Because this is a significant chunk of work, andwill require a
different solution for each editor, we've avoided it until now. Since
there certainly are many tasks for which direct manipulation can
be more effective than editing text in a code editor, we're excited
to explore this direction in the future.

6 CONCLUSION
We've been pleasently surprised with how useful Clerk has been
in our day-to-day work, and the adoption it has received within
the larger Clojure community suggests we are not the only ones
to feel this way. We believe there are two key factors in Clerk's
design that enable this:

• Enhancing regular Clojure namespaces enables incremental
adoption. Neither does it need initial buy-in from the whole
dev team, nor does a single member need to fully switch to
working with Clerk.

43https://plutojl.org
44https://livebook.dev

9

https://orgmode.org
https://www.gnu.org/software/emacs/
https://streamlit.io
https://docs.streamlit.io/library/get-started/main-concepts#caching
https://newspeaklanguage.org/pubs/newspeak-exemplars.pdf
https://plutojl.org
https://livebook.dev

PX 23, March 13–17, 2023, Tokyo, Japan Kavalar, Markovics, Rusher

• Working in concert with regular editors means it meets de-
veloperswhere they are and does not require a radical change
of workflows.

We'd love to see folks apply these design choices to other pro-
gramming ecosystems and join the pursuit to free programming
from the limitations of dead text.

REFERENCES
[1] Leif Andersen, Michael Ballantyne, and Matthias Felleisen. 2020. Adding inter-

active visual syntax to textual code. Proceedings of the ACM on Programming
Languages 4, OOPSLA (nov 2020), 1–28. https://doi.org/10.1145/3428290

[2] Souti Chattopadhyay, Ishita Prasad, Austin Z. Henley, Anita Sarma, and Titus
Barik. 2020. What's Wrong with Computational Notebooks? Pain Points, Needs,
and Design Opportunities. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. ACM. https://doi.org/10.1145/3313831.3376729

[3] Andrei Chiş, Oscar Nierstrasz, and Tudor Gîrba. 2015. Towards moldable de-
velopment tools. In Proceedings of the 6th Workshop on Evaluation and Usability
of Programming Languages and Tools. ACM. https://doi.org/10.1145/2846680.
2846684

[4] D. C. Engelbart. 1962. Augmenting Human Intellect: A Conceptual Framework.
Air Force Office of Scientific Research, SRI Summary Report AFOSR-3223. https:

//www.dougengelbart.org/pubs/augment-3906.html
[5] Rich Hickey. 2020. A history of Clojure. Proceedings of the ACM on Programming

Languages 4, HOPL (jun 2020), 1–46. https://doi.org/10.1145/3386321
[6] N. Kajler and N. Soiffer. 1998. A Survey of User Interfaces for Computer Algebra

Systems. Journal of Symbolic Computation 25, 2 (feb 1998), 127–159. https:
//doi.org/10.1006/jsco.1997.0170

[7] D. E. Knuth. 1984. Literate Programming. Comput. J. 27, 2 (feb 1984), 97–111.
https://doi.org/10.1093/comjnl/27.2.97

[8] Cyrus Omar, David Moon, Andrew Blinn, Ian Voysey, Nick Collins, and Ravi
Chugh. 2021. Filling typed holes with live GUIs. In Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and Imple-
mentation. ACM. https://doi.org/10.1145/3453483.3454059

[9] David Rauch, Patrick Rein, Stefan Ramson, Jens Lincke, and Robert Hirschfeld.
2019. Babylonian-style Programming: Design and Implementation of an In-
tegration of Live Examples into General-purpose Source Code. The Art, Sci-
ence, and Engineering of Programming 3, 3 (feb 2019). https://doi.org/10.22152/
programming-journal.org/2019/3/9

[10] Erik Sandewall. 1978. Programming in an Interactive Environment: the ``Lisp''
Experience. Comput. Surveys 10, 1 (mar 1978), 35–71. https://doi.org/10.1145/
356715.356719

[11] David Ungar and Randall B. Smith. 1987. Self: The power of simplicity. ACM
SIGPLANNotices 22, 12 (dec 1987), 227–242. https://doi.org/10.1145/38807.38828

10

https://doi.org/10.1145/3428290
https://doi.org/10.1145/3313831.3376729
https://doi.org/10.1145/2846680.2846684
https://doi.org/10.1145/2846680.2846684
https://www.dougengelbart.org/pubs/augment-3906.html
https://www.dougengelbart.org/pubs/augment-3906.html
https://doi.org/10.1145/3386321
https://doi.org/10.1006/jsco.1997.0170
https://doi.org/10.1006/jsco.1997.0170
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1145/3453483.3454059
https://doi.org/10.22152/programming-journal.org/2019/3/9
https://doi.org/10.22152/programming-journal.org/2019/3/9
https://doi.org/10.1145/356715.356719
https://doi.org/10.1145/356715.356719
https://doi.org/10.1145/38807.38828

	Abstract
	1 Introduction: Literate Programming, Notebooks and Interactive Development
	2 Programming with Clerk
	2.1 Basic Interaction: Bring-Your-Own-Editor
	2.2 Fast Feedback: Caching & Incremental Computation
	2.3 Semantic differences from regular Clojure
	2.4 Presentation
	2.5 Built-in Viewers
	2.6 Moldable Viewer API
	2.7 Sync
	2.8 Tap Stream Inspector
	2.9 Embedding Examples
	2.10 Prose-oriented Documents

	3 Examples of Moldable Development with Clerk
	3.1 Augmenting table names
	3.2 Rich documentation features
	3.3 Regex Dictionary
	3.4 : Interactive Lucene-powered Log Search
	3.5 Experience

	4 Related Work
	5 Future Work
	6 Conclusion
	References

